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Abstract. We investigate multicomponent reactive flow models derivedfrom the kinetic theory of gases. We discuss in par-
ticular the conservation equations, the transport fluxes and the transport coefficients in weak and strong magnetic fields. The
mathematical properties of the resulting hyperbolic-parabolic systems of partial differential equations modeling multicom-
ponent flows are deduced from the underlying kinetic framework. The structure and solution of the transport linear systems
associated with the evaluation of transport coefficients are also addressed. In particular, the convergence of iterative techniques
is deduced from the properties of the linearized Boltzmann collision operator. The impact of multicomponent transportis also
discussed, notably the importance of Soret effects in various flows and the impact of volume viscosity.
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INTRODUCTION

Multicomponent reactive flows with complex chemistry and detailed transport phenomena arise in various engineering
applications such as combustion [1, 2], crystal growth [3, 4], or atmospheric reentry [5, 6, 7]. This is the strong
motivation for investigating the derivation and mathematical properties of the corresponding systems of partial
differential equations as well as the numerical evaluationof transport coefficients and the impact of multicomponent
transport.

MODELING POLYATOMIC REACTIVE GAS MIXTURES

Boltzmann equations

For mixtures of polyatomic ionized reactive gases, semiclassical Boltzmann equations are typically written in the
form [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

∂t fk+ ck·∂x fk+bk·∂ck fk =
1
ε
Jk+ εaRk, k∈ S, (1)

where∂t denotes the time derivative,∂x the space derivative,∂ck the derivative with repect tock, S= {1, . . . ,n} the
species indexing set,n the number of species,ε the formal parameter associated with Enskog expansion,a the regime
parameter, and fork∈ S, fk denotes the distribution function,ck the particles velocity,bk = g+zk(E+ck∧B) the force
per unit mass,g a species independent specific force,zk the species charge per unit mass,E the electric field,B the
magnetic field, andJk andRk the scattering and reactive collision operators [7, 16]. The details of the scattering and
reactive terms are omitted and we refer to [7, 9, 14, 16, 17]. These collision termsJk andRk are conveniently written
in terms of—degeneracy averaged—transition probabilities which satisfy reciprocity relations [7, 8, 9, 14, 16, 17].
Application of the Chapman-Enskog method yields the fluid conservation equations, thermochemistry properties,
expressions for transport fluxes, and the transport linear systems [7, 8, 11, 12, 13, 15, 16].

We discuss in the following the transport fluxes and transport coefficients in the regimesa ∈ {0,1} as well as the
source terms obtained in the Maxwellian reaction regimea= 1. The regimea= 0 yields the same governing equations,
transport fluxes and transport coefficients than fora= 1 with the exception of a chemical pressure and perturbed source
terms which are out the scope of present paper [7, 15, 16, 18].The regimea = −1 is the kinetic equilibrium regime
[17, 19] whose equations and transport fluxes coincide with those obtained by superimposing chemical equilibrium in
a nonequilibrium model but the transport coefficients differ quantitatively [17].



Conservation equations and transport fluxes

The equations for conservation of species mass, momentum and energy derived from the kinetic theory are in the
form [9, 10, 15, 16]

∂tρk+ ∂x·(ρkv)+ ∂x·(ρkVk) = mkωk, k∈ S, (2)

∂t(ρv)+ ∂x·(ρv⊗v+ pI)+ ∂x·Π = ∑k∈Sρkbk, (3)

∂t(E + 1
2ρv·v)+ ∂x·

(
(E + 1

2ρv·v+ p)v
)
+ ∂x·(Q+Π ·v) = ∑k∈Sρk(v+Vk)·bk, (4)

whereρk denotes the mass density of thekth species,v the mass average flow velocity,Vk the diffusion velocity of the
kth species,mk the molar mass of thekth species,ωk the molar production rate of thekth species,ρ = ∑k∈Sρk the total
mass density,p the pressure,Π the viscous tensor,bk the specific force acting on thekth species,E the internal energy
per unit volume andQ the heat flux.

The transport fluxesΠ , Vk, k∈S, andQdue to macroscopic variable gradients can be written in the form [12, 15, 16]

Vk =−∑l∈SDkldl +θk∂x logT, k∈ S, (5)

Π =−κ(∂x·v)I −η
(
∂xv+ ∂xv

t − 2
3(∂x·v)I

)
, (6)

Q= ∑k∈ShkρkVk− λ̂ ∂xT − p∑k∈Sθkdk, (7)

whereDkl , k, l ∈ S, are the multicomponent diffusion coefficients,dk = (∂xpk−ρkbk)/p, k ∈ S, the diffusion driving
forces,pk = ρkRgT/mk, k∈S, the partial pressures,κ the volume viscosity,η the shear viscosity,θk, k∈S, the thermal

diffusion coefficients,̂λ the partial thermal conductivity andt the transposition operator.

Properties of transport coefficients

The mathematical structure and properties of the transportcoefficients may be obtained directly from the systems
of integral equations satisfied by the perturbed distribution functions or equivalently from the transport linear systems
discussed in the following [15]. The diffusion matrix is symmetric D = Dt , positive semi-definite, its nullspace is
N(D) = RY and the thermal diffusion coefficientsθ = (θ1, . . . ,θn)

t , are such that< θ ,Y >= 0 whereYk = ρk/ρ ,
Y = (Y1, . . . ,Yn)

t , and<,> denotes the Euclidean scalar product. These symmetric diffusion coefficients have been
introduced by Waldmann [8] and are more convenient than the non symmetric coefficients introduced by Hirschfelder,
Curtiss, and Bird [20] as discussed by Van de Ree [21]. The partial thermal conductivitŷλ and the shear viscosityη
are positive, and the volume viscosityκ is nonnegative. Defining the thermal diffusion ratiosχ = (χ1, . . . ,χn)

t as the
solution of the constrained systemDχ = θ , < χ ,u >= 0, whereu = (1, . . . ,1)t , andλ = λ̂ − (p/T) < Dχ ,χ >, the
thermal conductivityλ is positive. The diffusion velocities and the heat flux may conveniently be rewritten in terms
of the thermal conductivityλ and the thermal diffusion ratiosχ [8, 10, 12, 15] and it is also possible to introduce a
variational framework for a direct evaluation ofλ andχ [22].

Thermochemistry

Thermodynamics obtained from kinetic theory is valid out ofequilibrium and coincides with classical thermody-
namics written in terms of intensive variables. The internal energy per unit volumeE and the pressurep are writ-
ten asE = ∑k∈Sρkek(T) and p = ∑k∈SRgT ρk

mk
whereT is the absolute temperature andRg the gas constant. The

internal energyek of the kth species is given byek(T) = est
k +

∫ T
Tstcvk(τ)dτ, k ∈ S, whereest

k is the standard forma-
tion energy of thekth species at the standard temperatureTst andcvk the constant volume specific heat of thekth

species, which must be a positive function ofT ≥ 0 bounded away from zero. The (physical) entropy per unit vol-
umeS and the specific entropy of thekth speciessk may also be written in the formS = ∑k∈Sρksk(T,ρk) with

sk(T,ρk) = sst
k +

∫ T
Tst

cvk(T
′)

T ′ dT′−
Rg
mk

log
(

ρk
γstmk

)
, wheresst

k is the formation entropy of thekth species at the standard

temperatureTst and standard pressurepst = patm andγst = pst/RgTst is the standard concentration.



A system ofnr elementary reactions involvingn species may be written∑k∈Sνd
ki Mk ⇋ ∑k∈Sν r

ki Mk, i ∈ R, where
Mk is the chemical symbol of thekth species,νd

ki andν r
ki the forward and backward stoichiometric coefficients of the

kth species in theith reaction, andR= {1, . . . ,nr} the set of reaction indices. The macroscopic chemical production
ratesωk, k∈ S, obtained in the Maxwellian reaction regime are compatiblewith the law of mass action and in the form

ωk = ∑i∈R(ν r
ki −νd

ki)τi , k∈ S, τi = K s
i

(
exp< µ ,νd

i >−exp< µ ,ν r
i >

)
, i ∈ R,

where, for each reactioni, τi is the rate of progress, of theith reaction,K s
i the symmetric rate constant,νd

i =

(νd
1i , . . . ,ν

d
ni)

t andν r
i = (ν r

1i , . . . ,ν r
ni)

t the reaction vectors, andµ = (µ1, . . . ,µn)
t , whereµk = mkgk/RgT is the reduced

molar Gibbs function of thekth species. Upon decomposingτi between the forward and backward contributions we

haveτi = K d
i ∏l∈S

( ρl
ml

)νd
li −K r

i ∏l∈S

( ρl
ml

)ν r
li and the reaction constantsK d

i andK r
i are Maxwellian averaged values

of molecular chemical transition probabilities. The classical relationK d
i (T) = K e

i (T)K r
i (T)—whereK e

i (T) is
the so called equilibrium constant—is thus a consequence ofthe reciprocity relations between reactive transition
probabilities [15, 16].

From the Gibbs relationT DS = DE −∑k∈SgkDρk, where D denotes the total derivative, one can derive a
governing equation forρs= S

∂t(ρs)+ ∂x·(ρvs)+ ∂x·
(

Q
T −∑k∈S

gkρkVk
T

)
= κ

T (∂x·v)
2+ η

2T

∣∣∂xv+ ∂xv
t − 2

3(∂x·v) I
∣∣2+ λ

T2 |∂xT|
2

+ p
T ∑k,l∈SDkl

(
dk+ χk∂x logT

)
·
(
dl + χl∂x logT

)
+ ∑i∈RRgK s

i

(
〈µ ,νd

i 〉− 〈µ ,ν r
i 〉
) (

exp〈µ ,νd
i 〉−exp〈µ ,ν r

i 〉
)
,

where we have defined|A|2 = A : A for a matrixA and|a|2 = a·a for a vectora. Entropy production therefore appears
as a sum of nonnegative terms as for the underlying kinetic model and the fluid and kinetic entropy coincide up to
second order [11, 12, 16, 23, 24, 25].

THE CAUCHY PROBLEM

The equations governing multicomponent reactive flows havelocal smooth solutions [26] and global solutions around
constant equilibrium states [27]. A major ingredient in order to establish these results is symmetrization which results
from the properties of the system coefficients extracted from the kinetic theory of gases [16, 26, 27].

Entropy and symmetrization

Denoting byU the conservative variableU =
(
ρ1, . . . , ρn, ρv1, . . . , ρvd, E + 1

2ρv·v
)t

the governing equation can be
recast in the compact form

∂tU +∑i∈C Ai(U)∂iU = ∑i, j∈C ∂i

(
Bi j (U)∂ jU

)
+Ω(U), (8)

where∂i the space derivative operator in theith direction,C = {1, . . . ,d} the set of direction indices,d ≥ 1 the
space dimension,Ai(U) = ∂U Fc

i the jacobian matrix of the convective fluxesFc
i in the ith direction,Bi j , i, j ∈C,

the dissipation matrices such thatFi =−∑ j∈C Bi j (U)∂ jU , i ∈C, is the dissipative flux in theith direction, andΩ the
source term. All the system coefficientsAi(U), i ∈C, Bi j (U), i, j ∈C, are smooth functions ofU on an open convex
setOU . Symmetrization of second order dissipative systems generalize the classical results about hyperbolic systems
and can be applied to the system of equations governing multicomponent flows [27].

We define the entropic variable byV = −
(
∂US

)t
= (1/T)

(
g1 −

1
2v·v, . . . , gn−

1
2v·v, v1, . . . , vd,−1

)t
wheregk,

k ∈ S, are the species Gibbs functions, andU →V is aC∞ diffeomorphism. The corresponding governing equations
can be written

Ã0(V)∂tV +∑i∈C Ãi(V)∂iV = ∑i, j∈C ∂i

(
B̃i j (V)∂ jV

)
+ Ω̃(V), (9)

whereÃ0 = ∂VU , Ãi = AiÃ0, B̃i j = Bi j Ã0, Ω̃ = Ω, andÃ0 is symmetric positive definite,̃Ai , i ∈ C, are symmetric,
we have the reciprocity relations̃Bt

i j = B̃ ji , i, j ∈ C, andB̃ = ∑i, j∈C B̃i j wiwj is symmetric positive semidefinite for

w in the sphereΣd−1 andV ∈ OV [27]. The reciprocity relations̃Bt
i j = B̃ ji , i, j ∈ C, are direct consequences of

symmetry properties of the transport coefficients and thus of symmetry properties of transition probabilities. Similarly,
the positivity properties of̃B results from that of the linearized Boltzmann collision operator.



Normal forms and existence of solutions

The symmetrized system can next be rewritten into a normal form where hyperbolic and parabolic variables are
split [27, 28, 29]. We consider the normal variableW =

(
ρ , log(ρ r2

2 /ρ r1
1 ), . . . , log(ρ

rn
n /ρ r1

1 ), v1, . . . , vd, T
)t

where
rk = Rg/mk andV 7−→W is aC∞ diffeomorphism. The equations in theW variable obtained by the change of variable
V =V(W) and upon multiplying on the left hand side by the jacobian matrix ∂WVt can be written

A0(W)∂tW+∑i∈C Ai(W)∂iW = ∑i, j∈C ∂i

(
Bi j (W)∂ jW

)
+T (W,∂xW)+Ω(W), (10)

with A0 = ∂WVtÃ0∂WV, Bi j = ∂WVt B̃i j ∂WV, Ai = ∂WVt Ãi∂WV, T = −∑i, j∈C∂i(∂WVt)(B̃i j ∂WV)∂ jW, and

Ω = ∂WVtΩ̃. Introducing the partitionI = {1} and II = {2, . . . ,n+d+1}, we have the block structure

WI = (ρ), WII =
(
log(ρ r2

2 /ρ r1
1 ), . . . , log(ρ

rn
n /ρ r1

1 ), v1, . . . , vd, T
)t

, A0 =
(

A
I,I
0 0

0 A
II,II
0

)
, and Bi j =

(
0 0
0 BII,II

i j

)
. The matrix

B
II,II

= ∑i, j∈C B
II,II
i j wiwj is positive definite and we haveT (W,∂xW) =

(
0,T II (W,∂xWII )

)t
. The resulting system thus

appears as a composite system symmetric-hyperbolic in theWI variable and symmetric-strongly parabolic in theWII

variable and it is possible to characterize all possible such normal forms [27]. Using the normal form of the system
of partial differential equations, it is then possible to obtain local existence of solutions [26, 30] as well as global
solutions around constant equilibrium states and asymptotic stability [27, 28].

Let us consider—as a typical example—the existence of global solutions around equilibrium states in the absence
of forces acting on the species. The existence of equilibrium points is first a consequence of the Gibbsian structure
of thermochemistry [16]. Typically, forTe > 0 and (ρc

1, . . . ,ρ
c
n)

t ∈ (0,∞)n, there exists a unique equilibrium point
Ue with ve

i = 0, i ∈ C, and (ρe
1 − ρc

1, . . . ,ρ
e
n − ρc

n)
t ∈ Span{Mνi , i ∈ R} where νi = ν r

i − νd
i , i ∈ R, and M =

diag(m1, . . . ,mn). It is then necessary to establish a number of mathematical statements—omitted for the sake of
brevity—on the local dissipativity properties of the system in normal form. The linearized source termL(We) =
−∂WΩ(We) at equilibriumWe is notably symmetric positive semidefinite as a consequenceof symmetry properties
of reactive transition probabilities. The linearized normal form is also strictly dissipative, i.e., the eigenvaluesλ (ζ ,w)
of the problemλA0(We)φ + [iζ ∑i∈C Ai(We)wi + ζ 2 ∑i, j∈C Bi j (We)wiwj + L(We)]φ = 0, for ζ ∈ R\{0}, i2 = −1,
andw ∈ Σd−1, have a negative real part. Then ford ≥ 1, l ≥ [d/2]+2 andW0(x) such that‖W0 −We‖H l is small

enough—whereH l is the l th Sobolev space—the Cauchy problem with initial conditionsW(0,x) = W0(x) has a
global solution such thatWI −We

I ∈C0
(
[0,∞);H l )∩C1

(
[0,∞);H l−1) andWII −We

II ∈C0
(
[0,∞);H l )∩C1

(
[0,∞);H l−2),

sup
R

d |W(t)−We| goes to zero ast → ∞, and it is also possible to establish decay estimates [27].
Similar techniques may be applied to systems of partial differential equations modeling flows in total vibrational

disequilibrium [26], flows in partial chemical equilibrium[31], as well as ambipolar plasmas [32], It is also possible
to investigate local in time solutions [30] as well as one dimensional traveling waves [16, 33]. More precise properties

may also be required as for instance the sharp diffusion inequality δ ∑k∈S
x2
k

Yk
≤ p

T ∑k,l∈Sxkxl Dkl ≤
1
δ ∑k∈S

x2
k

Yk
valid for

δ small enough and anyx∈Rn such that〈x,u〉= 0, required in the study of deflagration waves [16], It is alsopossible
to investigate Enskog expansion of Boltzmann entropy and toestablish related entropicity properties [24, 25].

MAGNETIZED FLOWS

Boltzmann equations

The kinetic theory of gases in strong magnetic fields has beeninvestigated by numerous authors [6, 11, 12, 34, 35,
36, 37, 38, 39]. In strong magnetic fields, semiclassical Boltzmann equations are typically written in the form

∂t fk+ ck·∂x fk+ b̃k·∂ck fk+
1
ε
(ck− v)∧B·∂ck fk =

1
ε
Jk+ εaRk, k∈ S, (11)

whereb̃k = g+ zk(E+ v∧B) and the magnetic force term(ck − v)∧B·∂ck fk is now taken into account at the zeroth
order. The natural time variation of this term is indeed the inverse of the gyrofrequency which may be of the same
order than the collision time. Application of the Chapman-Enskog method to mixtures of magnetized polyatomic gas
mixtures has been recently revisited in [38, 39]. New expansions for the perturbed distributions functions have been
introduced, new symmetry properties have been establishedas well as simplified bracket expressions.



Conservation equations and transport fluxes

The conservation equations, completed by Maxwell’s equations, are in the form

∂tρi + ∂x·(ρiv)+ ∂x·(ρiVi) = miωi , i ∈ S, (12)

∂t(ρv)+ ∂x·(ρv⊗v+ pI)+ ∂x·Π = ρg+Q(E+ v∧B)+ J∧B, (13)

∂t

(
ρ(e+ 1

2v·v+ 1
2ε0E2+ 1

2µ0
B2)

)
+ ∂x·

(
ρ(h+ 1

2v·v+ 1
2ε0E2+ 1

2µ0
B2)

)
+ ∂x·(Q+Π ·v+ 1

µ0
E∧B) = ρg·v, (14)

∂tB+ ∂x∧E = 0, (15)

ε0∂tE− 1
µ0

∂x∧B+Qv+ J = 0. (16)

whereE denotes the electric field,B the magnetic field,Q the charge per unit volume andJ the diffusive current. The
viscous tensor derived in this regime is in the form

Π =−κ∂x·vI −η1S−η2
(
RB

S−SRB
)
−η3

(
−RB

SRB + 〈SB,B〉B⊗B
)

−η4
(
SB⊗B+B⊗BS−2〈SB,B〉B⊗B

)
−η5

(
B⊗BSRB −RB

SB⊗B
)
, (17)

whereS = (∂xv+ ∂xv
t)− 2

3(∂x·v) I is the strain rate tensor,B = B/‖B‖, RB the corresponding rotation matrix
RBx = B∧x, κ the volume viscosity andη1, . . . ,η5 the shear viscosities. Denoting the auxiliary vectors associated
with x∈ R3 by x‖ = (B·x)B, x⊥ = x− x‖, andx⊙ = B∧x, the species diffusion velocities and the heat flux are

Vi =−∑ j∈S

(
D‖

i j d
‖
j +D⊥

i j d
⊥
j +D⊙

i j d
⊙
j

)
−
(
θ ‖

i (∂x logT)‖+θ⊥
i (∂x logT)⊥+θ⊙

i (∂x logT)⊙
)

(18)

Q= ∑k∈ShkρkVk−
(
λ̂ ‖ (∂xT)

‖+ λ̂⊥ (∂xT)
⊥+ λ̂⊙ (∂xT)

⊙
)
− p∑k∈S

(
θ ‖

k d‖
k +θ⊥

k d⊥
k +θ⊙

k d⊙
k

)
. (19)

The coefficients parallel, perpendicular, and transverse to the magnetic field are denoted by the superscript‖, ⊥, and
⊙, respectively. It can be established that the transport fluxes are smooth functions ofB asB→ 0 [38, 39].

Properties of transport coefficients

Many properties obtained in the isotropic case have been generalized to the situation of strong magnetic fields.
New symmetry properties have recently been obtained as wellas the mathematical structure of the linear systems with
new iterative algorithms [38, 39, 40]. The multicomponent diffusion matrices perpendicularD⊥ and transverseD⊙

to the magnetic field are symmetric positive semi-definite with nullspaceRY and the entropy production associated
with dissipative effects has been shown to be positive [38, 39]. Note that some properties of these coefficients—in
particular the expansion for small magnetic fields—are not intuitive and can only be obtained from the kinetic theory
[38, 39]. The perpendicular and transverse transport coefficients are conveniently evaluated in a complex framework
and complex Stefan-Maxwell equations have also been obtained [11, 12, 38, 39].

The mathematical structure and properties of the resultingsystem of partial differential equations is more complex
than in the isotropic case. A new notion of mathematical entropy has been introduced as well as partial symmetrization
properties, and local existence results have been obtained[41].

ASYMPTOTIC EXPANSIONS OF TRANSPORT COEFFICIENTS

Isotropic transport coefficients

The Chapman-Enskog method requires solving systems of linearized integral Boltzmann equations with constraints
through a Galerkin variational procedure. Various variational approximation spaces can be used as reduced spaces
[15] or spaces for a direct evaluation of the thermal conductivity and the thermal diffusion ratios [22]. The successive
approximations in the Chapman-Enskog expansion of transport coefficients are still known to converge more slowly
in plasmas than in neutral mixtures [6, 35, 37, 42]. The transport linear systems are also naturally obtained in their
symmetric form [8, 10, 11, 12, 15, 43]. The linear system associated with any coefficientµ then take on either a



regular form or a singular form [15, 16]. The singular form can be writtenGα = β , with the constraint〈α,G 〉 = 0,
whereG ∈ R

ω,ω , α,β ,G ∈ R
ω , ω is the dimension of the variational space and the coefficientis obtained with a

scalar productµ = 〈α,β ′〉 [12, 15]. The matrixG is symmetric positive semi-definite, its nullspace is one dimensional
N(G) = RN , β ∈ R(G), and the well posedness conditionN(G)⊕G ⊥ = Rω holds [15]. The sparse transport matrix
db(G) is a submatrix [15] composed of diagonals of blocks ofG, and 2db(G)−G anddb(G) are symmetric positive
definite for n ≥ 3. All these properties can be deduced from the properties ofthe Boltzmann linearized collision
operator and that of the variational approximation spaces [15].

The solution of the transport linear system can then be obtained either from the symmetric positive definite system
(G+G ⊗G )α = β or from iterative techniques. The iterative techniques areeither generalized conjugate gradients
or stationary techniques associated with a splittingG= M−W, M = db(G), and yieldα = ∑0≤ j<∞(PT) jPM−1Ptβ ,
whereT = M−1W andP= I −N ⊗G /〈N ,G 〉. The matrixM+W = 2db(G)−G must be positive definite but this
is a consequence from Boltzmann linearized equations. These stationary and generalized conjugate gradients methods
have been found to be efficient for mixture of neutral gases [44, 45, 46, 47].

The situation of ionized mixtures is more complex since the convergence rate of stationary iterative techniques
deteriorate as the ionization level increases as discovered by García Muñoz [48]. On the contrary, the convergence
properties of generalized conjugate gradient algorithms do not depend on the ionization level. New algorithms have
been thus been introduced withmore singularversions of the transport linear systems. These algorithmshave led to
fast convergence rates for all ionization levels and magnetic field intensities [40].

Nonisotropic transport coefficients

The linear systems associated with transport coefficients parallel to the magnetic field are similar to the isotropic
systems already discussed. On the other hand, the linear systems associated with transport coefficients perpendicular
or transverse to the magnetic field are obtained by using a Hermitian Galerkin solution of the linearized Bolztmann
equations. These systems are complex since vector productswith the magnetic field have been transformed into
multiplication by imaginary numbers and take on either a regular or a singular form [38, 39]. The singular form
can be written(G+ iG′)α = β , with the constraint〈α,G 〉 = 0, whereG,G′ ∈ Rω,ω , α ∈ Cω , β ,G ∈ Rω , and the
corresponding transport coefficient is obtained with one scalar productµ⊥ + iµ⊙ = 〈α,β ′〉., where〈,〉 denotes the
Hemitian scalar product. The matrixG and the constraint vectorG are as in the isotropic case andG′ = QD ′P
where D ′ is diagonal,Q = I− G⊗N /〈G ,N 〉 and P = I− N ⊗G /〈G ,N 〉. In particularN(G+ iG′) = CN ,
the well posedness propertyN(G+ iG′)⊕ G ⊥ = C

ω holds andβ ∈ R(G+ iG′). The iterative techniques already
available for weak magnetic fields have been extended to the anisotropic case, either of the generalized conjugate
gradient type, or of the stationary type [38, 39]. In particular, upon introducing the splittingG+ iG′ = M −W,
whereM = db(G)+ diag(σ1, . . . ,σω) + iG′ is easily invertible, and the iteration matrixT = M−1W, we haveα =
∑0≤ j<∞(PT)

jPM−1Ptβ . The interest of these algorithms is that their convergenceproperties are never worse in the
magnetized caseB 6= 0.

Two temperature plasmas

Many authors have investigated the kinetic theory of nonequilibrium plasmas, either weakly magnetized or strongly
magnetized, [34, 35, 49, 50, 51, 52]. The most general thermodynamic nonequilibrium model is the state to state model
where each internal state of a molecule is independent and considered as a separate species [7, 53, 54, 55, 56]. When
there are partial equilibria between some of these states, species internal energy temperatures can be defined and the
complexity of the model is correspondingly reduced [54, 7].The next reduction step then consists in equating some of
the species internal temperatures or the translational temperature and it yields notably two-temperature plasma models.
A multiscale second order kinetic theory derivation has recently been obtained [57].

In a two temperature plasma, the transport linear systems for the heavy species turn out to be identical to the
isotropic systems with the set of speciesSreplaced by the set of heavy species. All iterative techniques and asymptotic
expansions can thus be used for nonequilibrium flows [40].



IMPACT OF MULTICOMPONENT TRANSPORT

Recent numerical investigations have brought further support for the importance of accurate transport property in
various multicomponent reactive flows. Thermal diffusion effects have been shown to be important in the study
of vortex-flame interaction, catalytic effects near walls,interfacial phenomena, gaseous or spray diffusion flames
[58], and chemical vapor deposition reactors [4]. The impact of multicomponent diffusion has also been shown to
be important in multidimensional hydrogen/air and methane/air Bunsen flames [47], in freely propagating flames—
especially with oxygen as pure oxydizer—as well as in directnumerical simulation of turbulent flames.

Theoretical calculations and experimental measurements have also shown that the ratioκ/η is not small for
polyatomic gases. Volume viscosity also arises in dense gases and in liquids, and its absence in dilute monatomic
gases is an exception rather than a rule. Despite its potential importance, volume or bulk viscosity has seldom been
included in computational models of multidimensional reactive flows [59]. For small Mach number flows, however,
the whole term∂x·

(
κ(∂x·v)I

)
has a weak influence because of itsstructure, even though both the ratioκ/η and the

dilatation∂x·v may not be small [16]. However, it has been shown that volume viscosity has an important impact
during a shock/hydrogen bubble interaction [60].
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