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Abstract. We investigate multicomponent reactive flow models derivech the kinetic theory of gases. We discuss in par-
ticular the conservation equations, the transport fluxestlaa transport coefficients in weak and strong magneticsiditie
mathematical properties of the resulting hyperbolic-palia systems of partial differential equations modelinglticom-
ponent flows are deduced from the underlying kinetic franmrkwi®he structure and solution of the transport linear syste
associated with the evaluation of transport coefficierdsadso addressed. In particular, the convergence of erethniques

is deduced from the properties of the linearized Boltzmanilisgon operator. The impact of multicomponent transj®glso
discussed, notably the importance of Soret effects in uarflows and the impact of volume viscosity.
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INTRODUCTION

Multicomponent reactive flows with complex chemistry anthiled transport phenomena arise in various engineering
applications such as combustion [1, 2], crystal growth [I3,04 atmospheric reentry [5, 6, 7]. This is the strong
motivation for investigating the derivation and mathemgtiproperties of the corresponding systems of partial
differential equations as well as the numerical evaluatibmansport coefficients and the impact of multicomponent
transport.

MODELING POLYATOMIC REACTIVE GAS MIXTURES

Boltzmann equations

For mixtures of polyatomic ionized reactive gases, sersgital Boltzmann equations are typically written in the
form[7, 8,9, 10, 11, 12, 13, 14, 15, 16]

1
dt fk+ Ck'dx kar bk'dck fk = E/k+ Sa%k, ke S, (1)

wheregd; denotes the time derivativé, the space derivativet, the derivative with repect to,, S= {1,...,n} the
species indexing set,the number of species,the formal parameter associated with Enskog expansitire regime
parameter, and fdc€ S, fy denotes the distribution functiog, the particles velocitypx = g+ z(E + ck/AB) the force
per unit massg a species independent specific forgethe species charge per unit maEsthe electric fieldB the
magnetic field, and#y andZ\ the scattering and reactive collision operators [7, 16¢ @btails of the scattering and
reactive terms are omitted and we refer to [7, 9, 14, 16, 1I7§s€ collision termg# andZy are conveniently written

in terms of—degeneracy averaged—transition probalslitiich satisfy reciprocity relations [7, 8, 9, 14, 16, 17].
Application of the Chapman-Enskog method yields the fluidsssvation equations, thermochemistry properties,
expressions for transport fluxes, and the transport linedems [7, 8, 11, 12, 13, 15, 16].

We discuss in the following the transport fluxes and transpeefficients in the regimes< {0,1} as well as the
source terms obtained in the Maxwellian reaction regimel. The regime = 0 yields the same governing equations,
transport fluxes and transport coefficients tharaferl with the exception of a chemical pressure and perturbegtsou
terms which are out the scope of present paper [7, 15, 16 Th&|regimea = —1 is the kinetic equilibrium regime
[17, 19] whose equations and transport fluxes coincide \mitsé obtained by superimposing chemical equilibrium in
a nonequilibrium model but the transport coefficients diffeantitatively [17].



Conservation equations and transport fluxes

The equations for conservation of species mass, momentdrersargy derived from the kinetic theory are in the
form[9, 10, 15, 16]

G P+ Oy (PV) + O (P Pk) = My, kes, 2
0, (pV) + 0y (pvav+ pl) + 0, I = S yesprb, (3)
(& + 3PV-V) + 0, ((& + 3pV-V+ P)V) + 0 (Q+ 1-V) = FyesP(V+ ¥h)- b, (4)

wherep, denotes the mass density of #i&speciesy the mass average flow velocity the diffusion velocity of the
ki speciesmy the molar mass of thid" speciesg, the molar production rate of thd speciesp = Y kesPk the total
mass densityp the pressurd]l the viscous tensohy the specific force acting on thé species¢ the internal energy
per unit volume and) the heat flux.

The transport fluxeBl, 7, k € S, andQ due to macroscopic variable gradients can be written indtra {12, 15, 16]

= —73esDud + &, logT, kes (5)
M= —K (3 V)l — N (3v+ M — 3(d,-V)I), (6)
Q= Tkeshko¥k — A 9T — P kes bk, 7)

whereDy, k,I € S are the multicomponent diffusion coefficientg,= (Jd,pk — pkbk)/p, k € S, the diffusion driving
forces,px = kagT/w, k € S, the partial pressures,the volume viscosity) the shear viscositg, k € S, the thermal

diffusion coefficients) the partial thermal conductivity addhe transposition operator.

Properties of transport coefficients

The mathematical structure and properties of the transpefficients may be obtained directly from the systems
of integral equations satisfied by the perturbed distrdsutunctions or equivalently from the transport linear syss
discussed in the following [15]. The diffusion matrix is syratric D = D!, positive semi-definite, its nullspace is
N(D) = Ry and the thermal diffusion coefficien&= (6y,...,6), are such thak 6,y >= 0 whereyy = px/p,

Y = (Y1,...,Yn)!, and<, > denotes the Euclidean scalar product. These symmetrigsitifi coefficients have been
introduced by Waldmann [8] and are more convenient thandinesgmmetric coefficients introduced by Hirschfelder,
Curtiss, and Bird [20] as discussed by Van de Ree [21]. Thigb#inermal conductivityA and the shear viscosity
are positive, and the volume viscosiyis nonnegative. Defining the thermal diffusion ratjps- (x1,...,xn)' as the
solution of the constrained systddy = 6, < x,u >= 0, whereu = (1,...,1)!, andA = A — (p/T) < Dx, x >, the
thermal conductivityl is positive. The diffusion velocities and the heat flux mayaniently be rewritten in terms
of the thermal conductivity and the thermal diffusion ratige [8, 10, 12, 15] and it is also possible to introduce a
variational framework for a direct evaluation dfandx [22].

Thermochemistry

Thermodynamics obtained from kinetic theory is valid oueqfiilibrium and coincides with classical thermody-
namics written in terms of intensive variables. The intéereergy per unit volume and the pressurp are writ-
ten asé’ = Yyesok&(T) andp = ZkeSRgT P whereT is the absolute temperature aRg the gas constant. The
internal energyg, of the k" species is given by (T =+ fTsthk( )dt, k € S, whereef! is the standard forma-
tion energy of the&k™ species at the standard temperam?band cw the constant volume specific heat of tié
species, which must be a positive functionTof> 0 bounded away from zero. The (physical) entropy per uni vol
ume.” and the specific entropy of thé" speciess, may also be written in the forny’ = S kesPkS(T, px) with

(T, o0) =S+ J7 1S q"‘ e . Iog (ﬁ"tkﬁ) wheres! is the formation entropy of th" species at the standard
temperaturd st and standard pressupét = p?Mandys! = pSt/Ry TSt is the standard concentration.



A system ofn’ elementary reactions involvingspecies may be Writteﬂkesvfi M = TkesVi M, | € R, where
My is the chemical symbol of theé" speciesyd andvj; the forward and backward stoichiometric coefficients of the
K species in thé" reaction, andR = {1,...,n"} the set of reaction indices. The macroscopic chemical piiotu
rateswy, k € S, obtained in the Maxwellian reaction regime are compatite the law of mass action and in the form

W= Yiecr(V — V)T, kes T = JS(exp< 4,vi> —exp< v >), i€R
where, for each reaction T; is the rate of progress, of th& reaction, s the symmetric rate constar\r-,d =
(vd,...,vdtandvf = (vi;,..., v}t the reaction vectors, and= (p, ..., tin)', wherepy = mgy/RgT is the reduced
molar Gibbs function of th&" species. Upon decomposimgbetween the forward and backward contributions we
d r
haver; = .79 |‘||€S(%)V” - |‘||€S(%)V” and the reaction constant& @ and. " are Maxwellian averaged values

of molecular chemical transition probabilities. The cleakrelation % %4(T) = J®(T).#"(T)—where #8(T) is
the so called equilibrium constant—is thus a consequendbeofeciprocity relations between reactive transition
probabilities [15, 16].

From the Gibbs relatiom D. = D& — SksD pk, where D denotes the total derivative, one can derive a
governing equation fops= .7

3,(09) + 3 (PV9 + 0y (§ — Skes 2478 = £(Bv)>+ 2|8+ 8o — 3Bv)1 [+ 210,T P
+2 SkiesDu (dk+ Xidx10gT)- (d + x104109T) + FicrRgH S ({1, V) — (1, V1)) (explu, vd) —exp(u, V),

where we have defingd|?> = A: A for a matrixA and|a|? = a- a for a vectora. Entropy production therefore appears
as a sum of nonnegative terms as for the underlying kinetidehand the fluid and kinetic entropy coincide up to
second order [11, 12, 16, 23, 24, 25].

THE CAUCHY PROBLEM
The equations governing multicomponent reactive flows lhasa smooth solutions [26] and global solutions around
constant equilibrium states [27]. A major ingredient inartb establish these results is symmetrization which tesul
from the properties of the system coefficients extractechfitee kinetic theory of gases [16, 26, 27].

Entropy and symmetrization

Denoting byU the conservative variablé = (pl, .ees Pny PVL, ..., PVY, &+ %pv v)t the governing equation can be
recast in the compact form

AU +JiecA(U)IU = 3 jec 8 (Bij(U)9;U) +Q(U), (®)
whered, the space derivative operator in tif& direction,C = {1,...,d} the set of direction indicesy > 1 the
space dimensiord;(U) = g, F° the jacobian matrix of the convective fluxes$ in the ith direction, Bjj, i,j € C,

the dissipation matrices such thét = — 5 jccBij (U)d;U, i € C, is the dissipative flux in thé" direction, and the
source term. All the system coefficie®gU ), i € C, Bjj(U), i, ] € C, are smooth functions &d on an open convex
setd,. Symmetrization of second order dissipative systems @dimerthe classical results about hyperbolic systems
and can be applied to the system of equations governingeoaipponent flows [27].

We define the entropic variable by = —(z?ujﬁ)t = (1/T)(91 — 3V-V,..., On—3V-V, Vi, ..., Vg, —1)t where gy,
k € S, are the species Gibbs functions, and- V is aC* diffeomorphism. The corresponding governing equations
can be written

Ao(V)AV + Sicc AV)BY = 5 jec 8 (Bij (V)I;V) + Q(V), 9)
whereAg = U, Aj = AA, BIJ = B.JAO Q =0, andAq is symmetrlc positive deflnlteA. i € C, are symmetric,
we have the reciprocity relatlorl?z§J = BJ., i,j €C, andB = Yijec B.Jw.wJ is symmetric positive semidefinite for

w in the sphereg?-1 andV € &y [27]. The reciprocity relatlonBIJ = BJ., i,j € C, are direct consequences of
symmetry properties of the transport coefficients and tfisgmmetry properties of transition probabilities. Sirmija
the positivity properties oB results from that of the linearized Boltzmann collision gier.



Normal forms and existence of solutions

The symmetrized system can next be rewritten into a normrat fehere hyperbolic and parabolic variables are
split [27, 28, 29]. We consider the normal variable= (p, Iog(pgz/pil),...,Iog(prr,”/p{l),vl,...,vd,T)t where
r« = Rg/meandV — W is aC™ diffeomorphism. The equations in th¢ variable obtained by the change of variable
V =V (W) and upon multiplying on the left hand side by the jacobianrixat,V' can be written

Po(W)W + Sicc AW)GW = 5 jec g, (Bij (W)GW ) + T (W, 3WW) + (W), (10)

with Ao = dwWV'AdwV, Bij = dWV'BijdwV, A = dWV'AGY, T = -3 ccd(8uV)(BijdV)d,W, and

Q = &WV'Q. Introducing the partitiont = {1} and 1 = {2,...,n+d+1}, we have the block structure
_ —y . )

W = (p), W = (log(pi2/pi%), ..., log(pn' /1), Vi, ..., v, T)', Bo = (Aé’ KE’")' andBjj = (ggﬁn). The matrix

B" =5 jcc Bl wiw; is positive definite and we havg (W,aW) = (0,7, (W,d,W))". The resulting system thus
appears as a composite system symmetric-hyperbolic iiMthariable and symmetric-strongly parabolic in tv
variable and it is possible to characterize all possibldswarmal forms [27]. Using the normal form of the system
of partial differential equations, it is then possible taab local existence of solutions [26, 30] as well as global
solutions around constant equilibrium states and asymeptability [27, 28].

Let us consider—as a typical example—the existence of gtdations around equilibrium states in the absence
of forces acting on the species. The existence of equilibwints is first a consequence of the Gibbsian structure
of thermochemistry [16]. Typically, fof® > 0 and (pf,...,pS)! € (0,0)", there exists a unique equilibrium point
U® with vé = 0, i € C, and (p$ — ps,...,pE — pE)t € Spar{Mv;, i € R} wherev; = v/ —v9, i € R, andM =
diag(my,...,my). It is then necessary to establish a number of mathematatdrnsents—omitted for the sake of
brevity—on the local dissipativity properties of the systén normal form. The linearized source telniw®) =
—a,,Q(W®) at equilibriumwe is notably symmetric positive semidefinite as a consequehsgmmetry properties
of reactive transition probabilities. The linearized naiform is also strictly dissipative, i.e., the eigenvali€g,w)
of the problemAAg(W®) @ + [i{ Ticc A(WEW; + {2 3 jcc Bij (WE)wiw;j + L(W®)]p = 0, for { € R\{0}, i? = —1,
andw € 291, have a negative real part. Then fbe> 1,1 > [d/2] +2 andWO(x) such that|w° —We|\H| is small

enough—whered' is thel™ Sobolev space—the Cauchy problem with initial COHdItIW%O ) has a
global solution such that/ —We € C°([0,0); H )mCl([O o);H'=1) andw; —We e C°([0, ﬂCl 0 ) HI 2),
SUpPd [W(t) —W®| goes to zero as— o, and it is also possible to establish decay estlmates [27]

Similar techniques may be applied to systems of partiabdkffitial equations modeling flows in total vibrational
disequilibrium [26], flows in partial chemical equilibriuf81], as well as ambipolar plasmas [32], It is also possible
to investigate local in time solutions [30] as well as one@nsional traveling waves [16, 33]. More precise properties

2 2
may also be required as for instance the sharp diffusioruisiéy 5Zkes§—i < B S hiesXX Dy < % ZKGS\% valid for
0 small enough and anye R" such thatx,u) = 0, required in the study of deflagration waves [16], It is gdessible
to investigate Enskog expansion of Boltzmann entropy ardtablish related entropicity properties [24, 25].

MAGNETIZED FLOWS

Boltzmann equations

The kinetic theory of gases in strong magnetic fields has e@stigated by numerous authors [6, 11, 12, 34, 35,
36, 37, 38, 39]. In strong magnetic fields, semiclassicatZBadnn equations are typically written in the form

~ 1 1
0, Tk + c- 0, f + bk'dck i+ E(CK7V)/\B~de fk= Eijr &%y, kes (12)

whereby = g+ z(E +vAB) and the magnetic force terfe, — v)AB-&, fx is now taken into account at the zeroth
order. The natural time variation of this term is indeed theeise of the gyrofrequency which may be of the same
order than the collision time. Application of the Chapmamskog method to mixtures of magnetized polyatomic gas
mixtures has been recently revisited in [38, 39]. New exjmanssfor the perturbed distributions functions have been
introduced, new symmetry properties have been establsh@ctll as simplified bracket expressions.



Conservation equations and transport fluxes

The conservation equations, completed by Maxwell's equatiare in the form

AP+ 0 (PV) + O (P %) =miw, €S (12)

0, (pVv) + 0y (pvav+ pl) + d,- N = pg+ 2(E + vAB) + JAB, (13)

d(p(e+3v-v+ 380E + 5-B%)) + 9 (p(h+ 3v-V+ 580E® + 5,5B%)) + 0 (Q+ MT-v+ - EAB) = pg-v, (14)
3B+ dNE =0, (15)

€00E — ;£ 0,\B+ 2v+1=0. (16)

whereE denotes the electric fiel® the magnetic field2 the charge per unit volume addhe diffusive current. The
viscous tensor derived in this regime is in the form

M= —kdVl—mS —n2(R?S —SR?) —n3(~-R? SR” + (SB, B) B2A)
~N4(SBRRB + BRRBS — 2(SB, B) BRR) — Ns(B2BSR” —R”S BR27), (17)

whereS = (4,v+ d ) — %(0X~V)| is the strain rate tensorg = B/||B||, R” the corresponding rotation matrix
R%x = %X, K the volume viscosity andy, ..., s the shear viscosities. Denoting the auxiliary vectors eiased

with x € R3 by Xl = (%-x) 4, x- = x— x|, andx® = ZAx, the species diffusion velocities and the heat flux are

% = — 3 jes(D}jd| + D} + D5 d?) — (8 (dlogT)l + 61(3,logT) - + 67(3,logT)) (18)

(8'(
Q= Skeshoti— (A1 (AT +AL(@BT)- +2° (3T)?) — pYres(6)d) + 61dg +67d). (19)

The coefficients parallel, perpendicular, and transverska magnetic field are denoted by the superséript, and
©, respectively. It can be established that the transporéflaxe smooth functions 8fasB — 0 [38, 39].

Properties of transport coefficients

Many properties obtained in the isotropic case have beearghred to the situation of strong magnetic fields.
New symmetry properties have recently been obtained asawéile mathematical structure of the linear systems with
new iterative algorithms [38, 39, 40]. The multicomponeifiugion matrices perpendicul@®' and transvers®®
to the magnetic field are symmetric positive semi-definitnwiullspaceRy and the entropy production associated
with dissipative effects has been shown to be positive [3§, [Sote that some properties of these coefficients—in
particular the expansion for small magnetic fields—are nttifive and can only be obtained from the kinetic theory
[38, 39]. The perpendicular and transverse transport cieffis are conveniently evaluated in a complex framework
and complex Stefan-Maxwell equations have also been adutditi, 12, 38, 39].

The mathematical structure and properties of the resudtystem of partial differential equations is more complex
than in the isotropic case. A new notion of mathematicalagmthas been introduced as well as partial symmetrization
properties, and local existence results have been obtpdigd

ASYMPTOTIC EXPANSIONS OF TRANSPORT COEFFICIENTS

Isotropic transport coefficients

The Chapman-Enskog method requires solving systems @irliresl integral Boltzmann equations with constraints
through a Galerkin variational procedure. Various vaoiadil approximation spaces can be used as reduced spaces
[15] or spaces for a direct evaluation of the thermal conigifigiand the thermal diffusion ratios [22]. The successive
approximations in the Chapman-Enskog expansion of trahspefficients are still known to converge more slowly
in plasmas than in neutral mixtures [6, 35, 37, 42]. The panslinear systems are also naturally obtained in their
symmetric form [8, 10, 11, 12, 15, 43]. The linear system aisged with any coefficienti then take on either a



regular form or a singular form [15, 16]. The singular forrmdze writtenGa = 3, with the constrainta,¥) = 0,
whereG € R¥%, a,B,¥4 € R¥, w is the dimension of the variational space and the coeffidenbtained with a
scalar productt = (a, ') [12, 15]. The matridG is symmetric positive semi-definite, its nullspace is omeetisional
N(G) =R.#, B € R(G), and the well posedness conditibiiG) & ¥+ = R® holds [15]. The sparse transport matrix
db(G) is a submatrix [15] composed of diagonals of block&oaind 21b(G) — G anddb(G) are symmetric positive
definite forn > 3. All these properties can be deduced from the propertigheoBoltzmann linearized collision
operator and that of the variational approximation spat8k [

The solution of the transport linear system can then be btéither from the symmetric positive definite system
(G+¥9 ®¥%)a = B or from iterative techniques. The iterative techniquesedtteer generalized conjugate gradients
or stationary techniques associated with a splitthg M —W, M = db(G), and yielda = ZOSJ-@(PT)JPM*lPtB,
whereT = M~W andP = | — 4/ ®% /(.4 ,%4). The matrixM +W = 2db(G) — G must be positive definite but this
is a consequence from Boltzmann linearized equations .€l$tesionary and generalized conjugate gradients methods
have been found to be efficient for mixture of neutral gasés45, 46, 47].

The situation of ionized mixtures is more complex since tbhevergence rate of stationary iterative techniques
deteriorate as the ionization level increases as discdugyeGarcia Mufioz [48]. On the contrary, the convergence
properties of generalized conjugate gradient algorithoaat depend on the ionization level. New algorithms have
been thus been introduced withore singularversions of the transport linear systems. These algorithexe led to
fast convergence rates for all ionization levels and magffietd intensities [40].

Nonisotropic transport coefficients

The linear systems associated with transport coefficieatsllel to the magnetic field are similar to the isotropic
systems already discussed. On the other hand, the lindensysssociated with transport coefficients perpendicular
or transverse to the magnetic field are obtained by using enldan Galerkin solution of the linearized Bolztmann
equations. These systems are complex since vector progitbtthe magnetic field have been transformed into
multiplication by imaginary numbers and take on either aut@gor a singular form [38, 39]. The singular form
can be writtenG +iG')a = B, with the constrain{a,¥) = 0, whereG,G' € R®®, a € C¥, 8,4 € R®, and the
corresponding transport coefficient is obtained with ore@ascproductu” +iu® = (a,’)., where(,) denotes the
Hemitian scalar product. The matr® and the constraint vectd# are as in the isotropic case a@ = QZ2'P
where 2’ is diagonal,Q = 1—- 9.4 /(4,.4) andP =1— A4/ ®Y/{4,./). In particularN(G +iG') = C1",
the well posedness prope¥(G +iG') @ ¥+ = C® holds andB € R(G + iG'). The iterative techniques already
available for weak magnetic fields have been extended torils®taopic case, either of the generalized conjugate
gradient type, or of the stationary type [38, 39]. In parféecuupon introducing the splitting +iG' = M — W,
whereM = db(G) +diag(01, ...,0,) +iG' is easily invertible, and the iteration matrix= M~W, we havea =
zosj@(PT)JPM*lPtB. The interest of these algorithms is that their converggmoperties are never worse in the
magnetized casB # 0.

Two temperature plasmas

Many authors have investigated the kinetic theory of noilibgiwm plasmas, either weakly magnetized or strongly
magnetized, [34, 35, 49, 50, 51, 52]. The most general theéymemmic nonequilibrium model is the state to state model
where each internal state of a molecule is independent amld=red as a separate species [7, 53, 54, 55, 56]. When
there are partial equilibria between some of these statesjes internal energy temperatures can be defined and the
complexity of the model is correspondingly reduced [54THe next reduction step then consists in equating some of
the species internal temperatures or the translationgleesture and it yields notably two-temperature plasma tsode
A multiscale second order kinetic theory derivation hagntly been obtained [57].

In a two temperature plasma, the transport linear systemthéoheavy species turn out to be identical to the
isotropic systems with the set of speci®placed by the set of heavy species. All iterative techesgand asymptotic
expansions can thus be used for nonequilibrium flows [40].



IMPACT OF MULTICOMPONENT TRANSPORT

Recent numerical investigations have brought further stipior the importance of accurate transport property in
various multicomponent reactive flows. Thermal diffusidfeets have been shown to be important in the study
of vortex-flame interaction, catalytic effects near wailgerfacial phenomena, gaseous or spray diffusion flames
[58], and chemical vapor deposition reactors [4]. The impdanulticomponent diffusion has also been shown to
be important in multidimensional hydrogen/air and mettain®&unsen flames [47], in freely propagating flames—
especially with oxygen as pure oxydizer—as well as in dinecherical simulation of turbulent flames.

Theoretical calculations and experimental measuremeats hlso shown that the ratio/n is not small for
polyatomic gases. Volume viscosity also arises in densesgasd in liquids, and its absence in dilute monatomic
gases is an exception rather than a rule. Despite its patémgportance, volume or bulk viscosity has seldom been
included in computational models of multidimensional taacflows [59]. For small Mach number flows, however,
the whole termd,- (k (d,-v)l) has a weak influence because ofstaicture even though both the ratio/n and the
dilatation d,-v may not be small [16]. However, it has been shown that voluiseogity has an important impact
during a shock/hydrogen bubble interaction [60].
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